
Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

 So we've been playing around with PortKnocking for some time, trying to find a good implementation that didn't create potential vulnerabilities itself - or at least presented as few as possible while working with some customers that needed something really fast. One interesting implementation that we've been toying with is written as a simple script. Whats also nice about this implementation is that it should be portable across Linux distributions, and should also work on almost anything else that support BASH scripts with some simple tweaks to the firewalling elements (changing iptables to ipf, etc.).

Yep, you heard right, BASH scripts. What you got here is a 100% shell based portknocking
server and client, with neither directly exposed to the traffic coming into the box its protecting so
no need to worry about processing packets. This is a really handy feature, not being a service
and not parsing packets directly, because that means we don't have to directly worry about our
client and server handling them. Without further delay, here is the server pieces:

#!/bin/bash
Change IP address to your own
Add this entry into /etc/syslog.conf
local7.* /var/log/boot.log

touch /var/log/portknocking.log

#create portknock "hook" at top of firewall rules?
or have user create "hook" in their rulesets?
or give them a choice?

HOOK=NO
LOG_REJECT=YES

if [$HOOK = "YES"]; then
 $IPTABLES -N PORTKNOCK
 #position 1 in the INPUT rules
 $IPTABLES -A INPUT -s 0.0.0.0/0 -d $our_ip -m state --state ESTABLISHED -p tcp --dport
22 -j ACCEPT 1
 #need to put ESABLISHED rule first
 #log the hits?
 if [$LOG_REJECT = "YES"; then
 $IPTABLES -A INPUT -s 0.0.0.0/0 -p tcp --dport 22 -j LOG --log-level notice
--log-prefix "SSH REJECT "
 fi

 1 / 6

http://www.gotroot.com/tiki-index.php?page=PortKnocking

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

 #and drop the baddies
 $IPTABLES -A INPUT -p tcp --dport 22 -j DROP 2
fi

base port of knocking (range from port0 to port0+4095 must be free)
port0=10000
password
pass="some_password"
unique string of knocking logs
id_string="PORT_KNOCKING"
knocking log file
log_file="/var/log/portknocking.log"
ip of our interface
our_ip="xxx.xxx.xx.xxx"

allowing only one connect from ip in this time period (seconds)
and also in other words max period of client and server clock desynchronisation
time_period=100
max time (in seconds) between two knocks in knocking sequence
delta=2
time period (in seconds) when door is open
sleep_time=10

don't touch
time_flag=0
used_time=0
cnt=0

IPTABLES=/usr/sbin/iptables
POLICY=`$IPTABLES -L INPUT | grep policy | awk '{print $4}' | tr -d)`

iptables initialisation for knocking listening
port1=$(($port0+4095))

$IPTABLES -A INPUT -s 0.0.0.0/0 -d $our_ip -p tcp --syn --dport $port0:$port1 -j LOG
--log-level notice --log-prefix "$id_string "

if [$POLICY = "ACCEPT"]; then
 $IPTABLES -A INPUT -p tcp --dport $port0:$port1 -j DROP
fi

allow only established ssh connection
$IPTABLES -A INPUT -s 0.0.0.0/0 -d $our_ip -m state --state ESTABLISHED -p tcp --dport 22 -j

 2 / 6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

ACCEPT

tail -n1 --follow=name --retry $log_file |
{
 # read no using line
 read

 # main cycle of reading log lines
 while [1 == 1]
 do
 read str

 # get time in seconds since `00:00:00 1970-01-01 UTC'
 time=`date +%s`

 # check is it our log line
 ok=`echo $str | grep $id_string`
 if [-z "$ok"]; then
 # to next iteration of main cycle
 continue
 fi

 # extract source ip and destination port from log line
 for fld in $str
 do
 case "${fld:0:4}" in
 "SRC=")
 sip=${fld:4}
 ;;
 "DPT=")
 dport=${fld:4}
 esac
 done

 # calculate secure combination of ports and time up to which this combinaton is valid
 if [$time -ge $used_time]; then
 time_stamp=$(($time/$time_period))
 sum=`echo $pass$time_stamp | md5sum`
 i=0
 sec_ports=""
 while [$i -lt 16]
 do
 j=${sum:$i*2:2}
 port=$(($port0+0x$j*16+$i))
 sec_ports="$sec_ports $port"

 3 / 6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

 i=$((i+1))
 done

 remainder=$(($time%$time_period))
 used_time=$(($time-$remainder+$time_period))
 used_ips=""

 fi

 # time period from last successsful processing
 dtime_flag=$(($time-$time_flag))

 if [$dtime_flag -gt $delta -o $cnt -eq 0]; then

 # check if our ip already processed in current time period
 ok=`echo $used_ips | grep $sip`
 if ["$ok"]; then
 # to next iteration of main cycle
 continue
 fi

 # begin processing for this ip
 cur_ip=$sip
 ports=""
 cnt=0

 else
 # not allowed simultaneously process more then one ip
 if [$sip != $cur_ip]; then
 # to next iteration of main cycle
 continue
 fi
 fi

 # time label of successful processing
 time_flag=$time
 # list of processing ports
 ports="$dport $ports"
 # port counter
 cnt=$((cnt+1))

 # it's time to check port sequence
 if [$cnt -eq 16]; then
 cnt=0

 # check if incoming knocking correct

 4 / 6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

 for port in $sec_ports
 do
 ok=`echo $ports | grep $port`
 if [-z "$ok"]; then
 continue
 fi
 done

 # open our door for some time
 if ["$ok"]; then
 used_ips="$used_ips $cur_ip"

 # turn on incoming ssh connects

 if [$POLICY = "ACCEPT"]; then
 $IPTABLES -D INPUT -p tcp --dport 22 -j DROP
 fi

 $IPTABLES -A INPUT -s $cur_ip -d $our_ip -p tcp --syn --dport 22 -j ACCEPT

 if [$POLICY = "ACCEPT"]; then
 $IPTABLES -A INPUT -p tcp --dport 22 -j DROP
 fi
 sleep $sleep_time
 # turn off incoming ssh connects
 $IPTABLES -D INPUT -s $cur_ip -d $our_ip -p tcp --syn --dport 22 -j ACCEPT
 fi
 fi

 done
}

And the client:

#!/bin/bash

program to knock (telnet or netcat)
prog="telnet"
must be equal to time period on knocking server
time_period=100
period between knocking sequence and ssh connect
sleep_period=2
ssh user
username=$1
destination ip

 5 / 6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

ip=$2

if [$# -ne 2]; then
 echo "usage: ./clientname username ip_address"
 exit
fi

read -p "enter base port of knocking: " -s port0
echo
read -p "enter knocking password: " -s pass
echo

calculate secure sequence of ports
time=`date +%s`
time_stamp=$(($time/$time_period))
sum=`echo $pass$time_stamp | md5sum`

i=0
ports=""
while [$i -lt 16]
do
 j=${sum:$i*2:2}
 port=$(($port0+0x$j*16+$i))
 ports="$ports $port"
 i=$((i+1))
done

start knocking
(
for port in $ports
do
 $prog $ip $port &
done
pkill $prog
) >/dev/null 2>&1
echo "knocking done"
sleep $sleep_period

echo "trying to ssh ..."
ssh -l $username $ip

As the client is written as a script, we can use it on almost any OS, provided that we have
sha1sum on the client and it can parse bash scripts.

 6 / 6

