Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

So we've been playing &odldaiting for some time, trying to ion that didn't cre

Yep, you heard right, BASH scripts. What you got here is a 100% shell based portknocking
server and client, with neither directly exposed to the traffic coming into the box its protecting so
no need to worry about processing packets. This is a really handy feature, not being a service
and not parsing packets directly, because that means we don't have to directly worry about our
client and server handling them. Without further delay, here is the server pieces:

#!/bin/bash

Change IP address to your own

Add this entry into /etc/syslog.conf

local7.” /var/log/boot.log

touch /var/log/portknocking.log

#create portknock "hook" at top of firewall rules?
or have user create "hook" in their rulesets?
or give them a choice?

HOOK=NO
LOG_REJECT=YES

if [$HOOK = "YES"]; then

$IPTABLES -N PORTKNOCK

#position 1 in the INPUT rules

$IPTABLES -A INPUT -s 0.0.0.0/0 -d $our_ip -m state --state ESTABLISHED -p tcp --dport
22 - ACCEPT 1

#need to put ESABLISHED rule first

#log the hits?

if [SLOG_REJECT = "YES"; then

$IPTABLES -A INPUT -s 0.0.0.0/0 -p tcp --dport 22 -j LOG --log-level notice

--log-prefix "SSH REJECT "

fi

http://www.gotroot.com/tiki-index.php?page=PortKnocking

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

#and drop the baddies
$IPTABLES -A INPUT -p tcp --dport 22 - DROP 2
fi

base port of knocking (range from port0 to port0+4095 must be free)
port0=10000

password

pass="some_password"

unique string of knocking logs

id_string="PORT_KNOCKING"

knocking log file

log_file="/var/log/portknocking.log"

ip of our interface

our_ip="XXX.XXX.XX.XXX"

allowing only one connect from ip in this time period (seconds)

and also in other words max period of client and server clock desynchronisation
time_period=100

max time (in seconds) between two knocks in knocking sequence

delta=2

time period (in seconds) when door is open

sleep_time=10

don't touch
time_flag=0
used_time=0
cnt=0

IPTABLES=/usr/sbin/iptables
POLICY="$IPTABLES -L INPUT | grep policy | awk {print $4}' | tr -d)’

iptables initialisation for knocking listening
port1=$(($port0+4095))

$IPTABLES -A INPUT -s 0.0.0.0/0 -d $our_ip -p tcp --syn --dport $port0:$port1 -j LOG
--log-level notice --log-prefix "$id_string "

if [SPOLICY = "ACCEPT"]; then
$IPTABLES -A INPUT -p tcp --dport $port0:$port1 -j DROP
fi

allow only established ssh connection
$IPTABLES -A INPUT -s 0.0.0.0/0 -d $our_ip -m state --state ESTABLISHED -p tcp --dport 22 -j

2/6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

ACCEPT

tail -n1 --follow=name --retry $log_file |
{

read no using line

read

main cycle of reading log lines
while [1 ==1]
do

read str

get time in seconds since "00:00:00 1970-01-01 UTC'
time="date +%s’

check is it our log line

ok="echo $str | grep $id_string’

if [-z "$ok"]; then
to next iteration of main cycle
continue

fi

extract source ip and destination port from log line
for fld in $str
do
case "${fld:0:4}" in
"SRC=")
sip=${fld:4}

"DPT=")
dport=${fld:4}
esac
done

calculate secure combination of ports and time up to which this combinaton is valid
if [$time -ge $used_time]; then
time_stamp=$(($time/$time_period))
sum="echo $pass$time_stamp | md5sum’
i=0
sec_ports=
while [$i -It 16]
do
j=${sum:$i*2:2}
port=%(($port0+0x$j*16+$i))
sec_ports="$sec_ports $port"

3/6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

i=$((i+1))

done

remainder=3(($time%S$time_period))
used_time=$(($time-$remainder+$time_period))
used_ips=""

fi

time period from last successsful processing
dtime_flag=$(($time-$time_flag))

if [$dtime_flag -gt $delta -o $cnt -eq 0]; then

check if our ip already processed in current time period
ok="echo $used_ips | grep $sip’
if ["$ok"]; then
to next iteration of main cycle
continue
fi

begin processing for this ip
cur_ip=%sip

ports=""

cnt=0

else
not allowed simultaneously process more then one ip
if [$sip != $cur_ip]; then
to next iteration of main cycle
continue
fi
fi

time label of successful processing
time_flag=$time

list of processing ports
ports="$dport $ports"

port counter

cnt=$((cnt+1))

it's time to check port sequence
if [$cnt -eq 16 |; then
cnt=0

check if incoming knocking correct

4/6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

for port in $sec_ports
do
ok="echo $ports | grep $port’
if [-z "$ok"]; then
continue
fi
done

open our door for some time
if ["$ok"]; then
used_ips="$used ips $cur_ip"

turn on incoming ssh connects

if [SPOLICY = "ACCEPT"]; then
$IPTABLES -D INPUT -p tcp --dport 22 -j DROP
fi

$IPTABLES -A INPUT -s $cur_ip -d $our_ip -p tcp --syn --dport 22 -j ACCEPT

if [$POLICY = "ACCEPT" |; then
$IPTABLES -A INPUT -p tcp --dport 22 -j DROP
fi
sleep $sleep_time
turn off incoming ssh connects
$IPTABLES -D INPUT -s $cur_ip -d $our_ip -p tcp --syn --dport 22 -j ACCEPT
fi
fi

done

And the client:
#!/bin/bash

program to knock (telnet or netcat)

prog="telnet"

must be equal to time period on knocking server
time_period=100

period between knocking sequence and ssh connect
sleep_period=2

ssh user

username=%1

destination ip

5/6

Portknocking in bash

Written by Michael Shinn
Thursday, 17 April 2008 00:00

ip=%$2

if [$# -ne 2]; then
echo "usage: ./clientname username ip_address"
exit

fi

read -p "enter base port of knocking: " -s port0
echo

read -p "enter knocking password: " -s pass
echo

calculate secure sequence of ports
time="date +%s’
time_stamp=$(($time/$time_period))
sum="echo $pass$time_stamp | mdSsum’

i=0
ports=
while [$i -It 16]
do
j=${sum:$i*2:2}
port=$(($port0+0x3$j*16+$i))
ports="$ports $port"
i=$((i+1))

done

start knocking
(
for port in $ports
do

$prog Sip $port &
done
pkill $prog
) >/dev/null 2>&1
echo "knocking done"
sleep $sleep_period

echo "trying to ssh ..."
ssh -I $username $ip

As the client is written as a script, we can use it on almost any OS, provided that we have

shailsum on the client and it can parse bash scripts.

6/6

